Tuesday, May 18, 2010

IPCC TECHNICAL ASSESSMENT REPORT 5 – THESIS 2

Thesis: That the discussion of sea level rise in IPCC TAR4 has much to recommend as a model for other topics.

Those of you who have already seen our first thesis, on global temperatures, may have got the impression that we were out to ‘get’ the IPCC. This is not the case. We are self-financed and have no agenda. As we say on our Home Page: “We are trying to prove only one thing: rational debate is possible when participants have access to the facts.”

In TAR4 the increase in sea level is presented in the following graph.





This graph appears as Figure 3 in the Summary for Policy Makers and elsewhere (We have extracted the sea levels from a compound graph which also showed Global Average Temperatures and Northern Hemisphere snow cover). It combines levels from tide gauges (circular dots) and satellite measurements (the red line).

In the summary the accompanying text says: “Global average sea level rose at an average rate of 1.8 [1.3 to 2.3] mm per year over 1961 to 2003. The rate was faster over 1993 to 2003: about 3.1 [2.4 to 3.8] mm per year. Whether the faster rate for 1993 to 2003 reflects decadal variability or an increase in the longer term trend is unclear.” Similar words appear in the Technical Summary and the Synthesis report. What is commendable in this case is that even in the condensed Summary for Policy Makers there is no attempt to attach a high level of significance to the higher rate of sea level rise for the ten years preceding the preparation of the report.

The Technical Summary also states (Paragraph 3.3.3): “The tide gauge record indicates that faster rates similar to that observed in 1993 to 2003 have occurred in other decades since 1950.” This is supported by the following figure in Chapter 5 of the main report.





This contrasts markedly to the global temperature graph we discussed in the previous ‘thesis’. (http://www.climatedata.info/Discussions/Discussions/opinions.php?id=5404421343497121129 ).

There are two areas where the increase could be presented in a wider context in TAR5.

Firstly since TAR4 was written there is more evidence of sea level changes in the last couple of thousand years.





The blue crosses represent relative sea level rise for Vidarholmi in Iceland as calculated by Gehrels et al. No adjustment has been made for post glacial rebound but this is unlikely to have varied substantially over the period of the estimates. The figure before 100 AD may have been modified by compression in the salt marsh sampling area but even so the levels after that date suggest that recent rates of rise are by no means extraordinary.

The green circles show estimates of sea level on the coast of Israel calculated by Sivan and Toker. They are based on archaeological evidence from different broadly defined time periods (e.g. Hellenic or Crusader). The dating and levels are not given to a high degree of accuracy but also suggest that rapid sea level changes might have occurred in the past.

The red line, provided for comparison, is the increase since 1702 based on tide gauges by Jevrejeva et al. This confirms that the rate of sea level increase accelerated around 200 years ago and is not a recent phenomenon.

The second point is that in the previous interglacial sea levels were about 6 m higher than they are today and in other interglacial periods levels were from 3 m to 20 m higher. It is therefore possible than in coming centuries many coastal locations on earth might experience sea level rises of the same order of magnitude as those estimated by Sivan and Toker. That said there are many coastal cities in the world, such as Marseilles, Akko (Acre) and Naples, which existed well before the start of the present era and which have adapted to sea level changes.

IPCC TAR5: The TAR4 dealt with sea level changes accurately and in a responsible way. However the IPCC TAR5 could be improved by expanding information on the context of the projected level changes.

References:
Gehrels et al., Rapid sea-level rise in the North Atlantic Ocean since the first half of the nineteenth century. The Holocene 2006; 16; 949

Shivan and Toker, The Sea’s ups and downs. http://newmedia-eng.haifa.ac.il/?p=2330

Jevrejeva, S., J.C. Moore, A. Grinsted and P.L. Woodworth. 2008. Recent global sea level acceleration started over 200 years ago?, Geophysical Research Letters, 35

Wednesday, May 12, 2010

IPCC TECHNICAL ASSESSMENT REPORT 5 – INTRODUCTION

At the start of 2010 the IPCC attracted a lot of criticism for three projected climate change impacts which were poorly supported. These were that Himalayan glaciers might disappear by 2035, that African agricultural yields could fall by 50% and that 40% of the Amazonian rain-forest could react drastically to changes in precipitation. In each case the source of the claim was speculative and lacking sound evidence. The IPCC’s response was that in such a major series of documents it was well nigh impossible to avoid a few mistakes. To some extent this is true but the fact the errors all erred on the side of exaggerating the effects of climate change says much about the IPCC’s lack of balance.

We believe however that there are more serious criticisms which can be leveled against the IPCC.

Science is only as good as its data and in many cases the data presented by the IPCC tell only part of the story.

Since we are criticising the IPCC we should make out own position clear. So where do we stand? We believe that the science and data show unequivocally that temperatures today are higher than would have been case were it not for greenhouse gases emitted by human activity. On the other hand we do not believe that the more extreme forecasts of increased temperatures and their impact have been proven. We also believe that there are good reasons for reducing use of fossil fuels, of which effect on the climate is but one.

We also believe that climate modelling is important for the future. In the past, design of anything affected by weather, urban drainage or water supply for example, has been based on a statistical analysis of past data. It is now clear that a fundamental assumption of such analysis, that the events analysed are independent of each other, is invalid. To be able to predict natural and anthropogenic changes in climate should become the new paradigm for engineering design.

Our position, and that of those who have studied the science and share our views, is similar to that of Martin Luther, the 15th century reformer. He was, and remained all his life, a Christian but he thought that the activities and excesses of the Roman Catholic Church at that time were acting against the faith he accepted. We believe that there is a powerful analogy with the IPCC at the present time. Its performance is such that far from leading the population to accept their assertion that unless radical and immediate action is taking the world will suffer gravely they, by bias and distortion in their arguments, have left many people refusing to accept that humans have any influence on the climate.

Martin Luther put his case by pinning 95 Theses to the door of a church (today he would probably have been a blogger). What we are going to do is to publish a series of ‘theses’ where we highlight some aspects of the IPCC Technical Assessment Report of 2007 (TAR4) which could be improved in the next report (TAR5).

There remains one important question: Why should you believe us? The answer is you won’t have to. For reach of our theses we will give chapter and verse on the section of IPCC TAR4 we are commenting on and the source of the data we use to propose improvements.